Permeability of porous materials determined from the Euler characteristic

Christian Scholz, Frank Wirner, Jan Götz, Ulrich Rüde, Gerd E. Schröder-Turk, Klaus Mecke, Clemens Bechinger

2. Physikalisches Institut
Universität Stuttgart

DY 27.4 DPG 2013
Motivation

Soil
Oil Reservoir
Foams
Tissue

\[Q = -k \eta \nabla P, \]
flow rate
pressure gradient
viscosity
permeability

Which structural information determines \(k \)?
Darcy’s law

\[Q = -\frac{k}{\eta} \nabla P, \]

flow rate \(Q \), pressure gradient \(\nabla P \), viscosity \(\eta \), permeability \(k \)
Motivation

Soil, Oil Reservoir, Foams, Tissue

Darcy’s law

\[Q = -\frac{k}{\eta} \nabla P, \]

flow rate \(Q \), pressure gradient \(\nabla P \), viscosity \(\eta \), permeability \(k \)

Which structural information determines \(k \)?
Katz-Thompson law

\[k = c l_c^2 \left(\frac{\sigma}{\sigma_0} \right), \]

critical pore diameter \(l_c \), conductivity \(\sigma \), fluid conductivity \(\sigma_0 \)
Katz-Thompson law

\[k = c l_c^2 \left(\frac{\sigma}{\sigma_0} \right) , \]

critical pore diameter \(l_c \), conductivity \(\sigma \), fluid conductivity \(\sigma_0 \)
Katz-Thompson law

\[k = c l_c^2 \left(\frac{\sigma}{\sigma_0} \right), \]

critical pore diameter \(l_c \), conductivity \(\sigma \), fluid conductivity \(\sigma_0 \)

Archie’s law
Archie, Petroleum Transactions of AIME 146: 54–62 (1942)

\[\frac{\sigma}{\sigma_0} = \left(\frac{\phi - \phi_c}{1 - \phi_c} \right)^\nu, \]

porosity \(\phi \), percolation threshold \(\phi_c \), \(\nu = 1.3 \)
Limitations of Archie’s law

- Archie’s law only valid close to ϕ_c
- ϕ_c cannot be determined from a single sample
Limitations of Archie’s law

- Archie’s law only valid close to ϕ_c
- ϕ_c cannot be determined from a single sample
Limitations of Archie’s law

- Archie’s law only valid close to ϕ_c
- ϕ_c cannot be determined from a single sample

Alternative relation independent of ϕ_c?
⇒
Minkowski functionals
Minkowski functionals

- Area
- Boundary
- Euler Characteristic
Minkowski functionals

- Area
- Boundary
- Euler Characteristic
Minkowski functionals

- Area
- Boundary
- Euler Characteristic
Minkowski functionals

- Area
- Boundary
- Euler Characteristic
Boolean Models - Randomly overlapping grains

Circles

Ellipses

Porosities $\phi \in [\phi_c, 1]$.
Microfluidic (Quasi 2D) measurement + LB Simulation

- PDMS structure
- L
- w
- h
- ΔP

Colloidal tracers + video microscopy
Microfluidic (Quasi 2D) measurement + LB Simulation

Colloidal tracers + video microscopy
Results

Circles (▼, ▶), Ellipses (▲, △)
\[\frac{k}{c l^2} \sim \left(\frac{\phi - \phi_c}{1 - \phi_c} \right) \]

Circles (▼, ▽), Ellipses (▲, △)
Relation to Minkowski functionals

Permeability vs. Euler characteristic

\[k = c l_c^2 \left(\frac{1 - \chi_o}{N} \right)^\alpha, \]

Euler characteristic of the conducting phase \(\chi_o \), total number of grains \(N \)
Permeability vs. Euler characteristic

\[k = c l_c^2 \left(\frac{1 - \chi_o}{N} \right)^\alpha, \]

Euler characteristic of the conducting phase \(\chi_o \), total number of grains \(N \)

\[\rightarrow \text{Independent of } \phi_c \]

$\frac{k}{c l_c^2} = 10 \times (1 - \chi_o)/N$

Circles (▼, ▽), Ellipses (▲, △)
Relation to χ_0

$\frac{k}{cl^2}$ vs. ϕ_0

Circles (▼, ▽), Ellipses (▲, △)
Velocity fields

\[\frac{1 - \chi_0}{N} \]
Conclusion

- Permeability determined from Euler Characteristic independent of ϕ_c
- Applicability to arbitrary structures?
Conclusion

- Permeability determined from Euler Characteristic independent of ϕ_c
- Applicability to arbitrary structures?
Thank you for your attention
Material reconstruction based on Minkowski functionals

Boolean models and Minkowski functionals

Direct relation between Minkowski functionals and permeability?